AMD Zen 4 Ryzen 7000 Specs, Release Date, Benchmarks, and More

The arrival of AMD’s Zen 4 Ryzen 7000 series “Raphael” processors draws near, and recent developments make this a critical release for the company. AMD’s previous-gen Ryzen 5000 processors accomplished what was once thought impossible: The chips unseated Intel’s best in every CPU benchmark, including taking the top of our list of best CPUs for gaming, as the company outclassed Intel’s Rocket Lake in every regard.

But then Alder Lake happened. Intel’s new hybrid x86 architecture, featuring a blend of big and powerful cores mixed in with small efficiency cores, pushed the company into the lead in all facets of raw performance and even helped reduce its glaring deficiencies in the power consumption department. But, perhaps most importantly, Alder Lake started a full-on price war with Intel’s new bare-knuckle approach to pricing, particularly in the mid-range that serves as gamer country. 

But AMD isn’t standing still, and its Ryzen 7000 chips are now poised on the starting blocks to take the race for performance leadership to the next level. AMD recently demoed a 16-core Ryzen 7000 processor hitting an amazing 5.5 GHz during a gaming demo and completing a Blender render in 31% less time than Intel’s flagship Core i9-12900K. There’s also leaked information pointing to a peak 5.7 GHz clock from the Zen 4 processors.

AMD officially says the final chips will come with up to >5.5 GHz boost clocks and are loaded with new tech, like a new integrated Radeon RDNA 2 graphics engine, and support AI instructions based on AVX-512. We’ve also learned plenty of new details about the 5nm Zen 4 Ryzen 7000 ‘Raphael’ processors and the new wave of motherboards with the AM5 socket. AMD also confirmed during its recent analyst day that not only will the standard desktop PC chips come this year, but the company will also launch the 3D V-Cache models by the end of the year. 

Intel has its Raptor Lake processors poised on the starting blocks, ensuring that AMD’s Ryzen 7000 will have stiff competition when it arrives later this year. We’ve gathered all of the information we know, both from official and unofficial sources, into this article. We’ll update the article as we learn more, but here’s what we know so far. 

AMD Zen 4 Ryzen 7000 Series at a Glance

  • Codename Raphael 
  • Launch September 15
  • Up to 16 cores and 32 threads on TSMC 5nm process (N5 used for compute die)
  • (up to) >5.5 GHz boost (Rumored 5.7 GHz peak)
  • High-End Ryzen 9 7950X, Ryzen 9 7900X, Ryzen 7 7700X, and Ryzen 5 7600X at launch
  • 6nm I/O die, DDR5 memory controllers, PCIe 5.0 interface
  • DDR5 only (no DDR4 support)
  • RDNA 2 integrated GPU (present on IOD)
  • Zen 4 architecture has an 8 to 10% IPC gain
  • >15% gain in single-threaded work, >35% overall performance gain (multi-threaded workloads), >25% performance-per-watt gains
  • AM5 Socket LGA 1718, backward compatible with AM4 coolers
  • 600-Series Chipset: X670E Extreme, X670, and B650 Motherboards
  • up to 170W TDP, 230W peak power
  • up to 125% more memory bandwidth per core
  • Support for AVX-512
  • 3D V-Cache Zen 4 models will come to market this year

AMD Zen 4 Ryzen 7000 Release Date Window

AMD has set Fall 2022 as the official launch window for the first Zen 4 products, the Ryzen 7000 series for desktop PCs (codenamed Raphael). For the US, Fall begins on September 22 and ends on December 22, meaning we’ll see Ryzen 7000 by the end of the year. AMD has already demoed its 16-core 32-thread Ryzen processor, presumably the flagship processor, and if the company follows tradition, we expect it to launch its highest-end products first. The company has confirmed that 16 cores and 32 threads are the maximum core count for the Ryzen 7000 at launch.  

AMD CEO Lisa Su said during the company’s recent earnings conference that the 5nm Ryzen 7000 chips and accompanying AM5 motherboards will launch this quarter, meaning by the end of September. MSI further refined that to September 15 with a posting on Weibo, confirming multiple prior leaks. It is noteworthy that this lands a full week before Fall, and we’re more accustomed to vendors releasing at the tail end of the designated window rather than before it. In other words, AMD will be bucking a well-established trend if it launches early.

The Ryzen 7000 chips will mark just the first step of the Zen 4 journey as the company delivers on its CPU roadmap and brings them to the desktop and notebook markets. AMD will also use the Zen 4 architecture for its data center CPU roadmap

AMD Zen 4 Ryzen 7000 Specifications and Features

We still have much to learn from AMD about the actual end products — AMD hasn’t announced official specifications for the individual Ryzen 7000 SKUs yet, but we do have a leaked list below. We do a bit of official info from a slip — AMD itself has posted the Ryzen 9 7950X, Ryzen 9 7900X, Ryzen 7 7700X, and Ryzen 5 7600X to its public-facing product library. These listings don’t provide any detail, but do give us the general idea of how the new family will look, at least based on the previous-gen Ryzen models that bear the same naming convention. We also don’t see any signs of Ryzen 3 or Athlon chips in the initial lineup. 

However, a more comprehensive listing has appeared. A hardware leaker that has posted pre-launch reviews of Intel’s 13th-Gen Raptor Lake also posted the Ryzen 7000 specifications. Motherboard maker ASRock issued a strange press release thereafter, saying that the leak didn’t come from one of its employees. There weren’t any reports in the press that ASRock had leaked the information, but if the specifications were inaccurate, the company would have no reason to disavow participation. This lends credence to the leak, but as with all unconfirmed specs, take them with some salt:

AMD Ryzen 7000 Zen 4 Specifications*
Cores/Threads Boost Clock (GHz) L3 Cache (MB) L2 Cache (MB) TDP / PBP / MTP
Ryzen 9 7950X 16 / 32 5.7 64 16 170W / 230W
Core i9-13900K 24 Cores / 32 Threads | 8P + 16E ? 36 ? 125W / 241W
Ryzen 9 5950X 16 / 32 4.9 64 8 105W
Ryzen 9 7900X 12 / 24 5.6 64 12 170W / 230W
Core i7-13700K / KF 16 Cores / 24 threads | 8P + 8E ? 30 ? 125W / ?
Ryzen 9 5900X 12 / 24 4.8 64 6 105W
Ryzen 7 7700X 8 / 16 5.4 32 8 105W / ?
Ryzen 7 5700X 8 / 16 4.6 32 4 105W
Ryzen 5 7600X 6 / 12 5.3 32 6 105W / ?
Core i5-13600K 14 Cores / 20 Threads | 6C + 8E ? 24 ? 125W / ?
Ryzen 7 5600X 6 / 12 4.6 32 3 65W

*Specifications are unconfirmed.

We combined those stats with other known information, including what we know about Intel’s Raptor Lake, to generate the above table. As you can see, AMD has increased clock speeds across the breadth of its four new SKUs, a benefit of both the 5nm process and an architecture tuned for higher clock rates. For instance, the flagship Ryzen 9 7950X will purportedly have a 16% higher clock rate than the Ryzen 9 5950X, with its 5.7 GHz boost clock rate marking an incredible achievement for a 16-core chip — that’s 800 MHz faster than its predecessor. The Ryzen 9 7900X is also impressive, with the 12-core chip featuring an 800 MHz clock speed improvement.

Overall, we see the same core counts as the previous-gen models but 16% to 17% higher clock rates across the new range of Ryzen 7000 SKUs. In addition, the chips all have more L2 cache but the same L3 cache capacity.

AMD has also bumped up its TDP ratings, with a 65W increase in the base TDP for the Ryzen 9 models and a 45W increase for the Ryzen 5. The Ryzen 7 7700X doesn’t see a TDP increase. We have a further breakdown of AMD’s new TDP ranges in a section below. As with AMD’s own publicly posted listing in its product library, there’s no mention of a Ryzen 7 7800X to replace the outgoing 5800X. Perhaps AMD is leaving a spot for its V-Cache-enabled X3D model here. 

AMD has also demoed a 16-core chip reaching up to 5.5 GHz on all cores during gaming — and that’s without overclocking and using a standard 280mm AIO cooler. In fact, the company says the chips feature ‘>5.5 GHz,’ meaning we could see even higher boost clock speeds, but it hasn’t shared any official frequency stats. Of course, the leaked info above points to a 5.7 GHz peak clock rate, but as with all of AMD’s latest chips, that will only occur on two cores: AMD has confirmed that Ryzen 7000 still features Precision Boost 2 to expose the maximum boost frequencies possible at all times. We also know that Intel’s Raptor Lake will boost to 5.8 GHz, though, and perhaps higher.

Here’s how we think the overall Ryzen 7000 vs Intel 13th-Gen Raptor Lake specs will pan out, though bear in mind that not all specs are confirmed: 

Ryzen 7000 vs Raptor Lake
AMD Zen 4 Ryzen 7000 Intel Raptor Lake
Release Date: Rumored September 15th Mid- to Late-October
Node / Design TSMC 5nm Compute die, 6nm I/O DIe Intel 7 – Monolithic Die
Cores / Threads Up to 16 Cores / 32 Threads Up to 8P + 16E | 24 Cores / 32 Threads
Peak Clocks ~5.7 GHz 5.8 Observed / 6.0 Rumored
TDP / PBP / MTP 170W / 230W 125W / 241W
Memory DDR5 Only (No DDR4 support) DDR4-3200 / DDR5-5200 (5600)
PCIe PCIe 5.0 – 24 Lanes PCIe 5.0 x16, PCIe 4.0 x4 (SSD)
Graphics ? ?

AMD shared a block diagram of the standard Ryzen 7000 chip, and we took a close-up snip of a bare Ryzen 7000 chip during the company’s Computex keynote. The chip houses two gold-colored 5nm core chiplets, each sporting eight cores. AMD says these are based on an optimized version of TSMC’s high-performance 5nm process technology (likely N5), and they are placed much closer together than we’ve seen with previous Ryzen core chiplets. In addition, we see what appears to be a shim between the two core chiplets, likely to maintain an even surface atop the two dies. It is also possible that this close orientation is due to some type of advanced packaging interconnect between the two chips.

We can also see a clear outline around the top of each CCD, but we aren’t sure if this is from a new metallization technique. We do know that the gold color is due to Backside Metallization (BSM), which includes an Au coating to prevent oxidation while improving TIM adhesion and lowering thermal impedance. We also see quite a few empty spots for capacitors, which is interesting and could imply heftier designs down the road.

The new I/O die uses the 6nm process and houses the PCIe 5.0 and DDR5 memory controllers along with a much-needed addition for AMD — the RDNA 2 graphics engine. The new 6nm I/O die also has a low-power architecture based on features pulled in from AMD’s Ryzen 6000 chips, so it has enhanced low power management features and an expanded palette of low-power states. AMD says this chip now consumes around 20W, which is less than it did with Ryzen 5000, and will deliver the majority of the power savings we see in Ryzen 7000.

Surprisingly, the new I/O die appears to be roughly the same size as the previous-gen 12nm I/O die. However, given that the 6nm die is far denser than the 12nm die from GlobalFoundries, meaning it has far more transistors, it’s safe to assume the integrated GPU has consumed a significant portion of the transistor budget (possibly due in part to onboard iGPU cache). The large 6nm I/O die will inevitably add to the cost of the chips, as the 6nm die will be far more expensive than the mature 12nm I/O die that AMD used in the Ryzen 5000 chips.

AMD has officially confirmed that the Ryzen 7000 series chips will come with models armed with the company’s 3D V-Cache this year, enabling incredible L3 cache capacity through its innovative 3D-stacked SRAM tech that fuses an L3 chiplet on top of the compute cores. We’ve seen this technology give the Ryzen 7 5800X3D a total of 96MB of L3 cache, providing it with industry-leading gaming performance. We might have already seen signs of this — memory maker TeamGroup recently mentioned the Raphael-X processors in a press release. AMD hasn’t divulged ‘Raphael-X’ as the official name of the 3D V-Cache Ryzen 7000 chips, but it does follow the same naming convention as the Milan-X server chips that have the same tech. It’s certainly possible this is merely a mistake on TeamGroup’s part, but speculation is intense that this will be the codename for the consumer Zen 4 3D V-Cache chips.

Although AMD hasn’t divulged memory frequencies, AMD’s test notes include a benchmark with the 16-core chip running DDR5-6000 CL30, and the company has said it has already hit DDR5-6400 during validation tests (a recent leak also points to DDR5-6400). It’s unclear if those are stock frequencies or XMP/overclock values (AMD tends to use XMP profiles for its benchmarks). AMD recently touted that it expects to have exceptional DDR5 overclockability, making the memory controllers sound impressive from afar, and the new AMD EXPO (EXtended Profiles for Overclocking) tech looks like an alternative to Intel’s XMP branding. Simply put, AMD will support pre-defined memory profiles with dialed-in memory frequencies, timings, and voltages to enable one-click memory overclocks. A newly-filed patent also points to a possible upcoming automatic memory overclocking feature that would provide more of a dynamic approach that exceeds pre-validated EXPO profile speeds.

The Ryzen 7000 chips support up to 24 lanes of the PCIe 5.0 interface directly from the socket (further details in the motherboard section). AMD is busy enabling the PCIe 5.0 SSD ecosystem with Phison, Micron, and Crucial. Crucial and Micron will have their first PCIe 5.0 SSDs in the market when AM5 motherboards arrive on the market. Additionally, the constellation of third-party SSDs will also use Phison’s E26 PCIe 5.0 SSD controllers, meaning we’ll soon see wide availability of even speedier drives. That will come in handy for Zen 4 Ryzen 7000 systems — AMD claims a 60% performance gain in sequential read workloads with PCIe 5.0 SSDs. 

Phison backed that up with a recent demo showing its E26 SSD hitting up to 12 GB/s of read throughput (more detailed result in that link). PCIe 5.0’s sequential performance potential will be great for Microsoft’s DirectStorage because it relies heavily upon read throughput to reduce game loading times to roughly a second. AMD also says Ryzen 7000 will support Smart Access Storage (SAS), which appears to be a slightly tweaked version of DirectStorage that’s built on the same APIs. You can see more information about AMD’s PCIe 5.0 SSD enablement here

On the security front, AMD’s Ryzen 6000 ‘Rembrandt’ processors arrived with support for Microsoft’s Pluton, enabling more robust security to helps prevent physical attacks and encryption key theft while protecting against firmware attacks. Pluton originally debuted in the Xbox and AMD’s EPYC data center processors and is complementary to AMD’s other security features, like AMD Secure Processor and Memory Guard, among others. AMD hasn’t officially confirmed that Pluton is present in Ryzen 7000, but it is expected. Lenovo’s Ryzen 6000-powered laptops recently arrived with support for non-Windows operating systems locked out via the Pluton chip, but that appears to be a proprietary implementation, meaning it probably won’t be similar with Ryzen 7000 retail units.

The Ryzen 7000 processors come with expanded instructions for AI acceleration through its support of AVX-512 instructions, which can be used for functions like VNNI for neural networks and BFLOAT16 for inference. That oddly places Intel’s Alder and Raptor Lake chips at a disadvantage as they have disabled AVX-512 functionality due to the hybrid architecture. Software vendors are already preparing for the new functionality — benchmarking and monitoring tool AIDA64 recently added support for AVX-512 with Zen 4 processors.

AMD Zen 4 Ryzen 7000 Integrated Graphics iGPU

All Ryzen 7000 chips will support some form of graphics, so it doesn’t appear there will be graphics-less options, like Intel’s F-series, for now. The RDNA 2 engine resides on the IOD (I/O Die) and supports up to four display outputs, including DisplayPort 2 and HDMI 2.1 ports, and Ryzen 7000 has the same video (VCN) and display (DCN) engine as the Ryzen 6000 ‘Rembrandt” processors. Even though all Ryzen 7000 chips will have baked-in iGPUs, the company will still release Zen 4 APUs with beefier iGPUs. The company will also bring its Smart Shift ECO tech, which allows shifting the graphical work between the iGPU and a discrete GPU to save power, to the Ryzen 7000 models for the desktop PC.

AMD has tried to temper expectations for the integrated graphics engine, pointing out that the RDNA 2 graphics are only designed to ‘light up’ displays, cautioning that we shouldn’t expect any meaningful gaming performance. AMD has said that all SKUs will have the same undisclosed number of CUs — the IOD configuration will be the same for all models. As such, it’s safe to assume we’re looking at probably 2 to 4 CUs per Ryzen 7000 chip.

If it’s any consolation, the iGPU’s close proximity to the DDR5 controllers also resident on the die should provide plenty of bandwidth from the main memory. However, we’ll have to wait to learn exactly how many cores the graphics engine has, but we have seen this iGPU running between 1,000 and 2,000 MHz in a recent benchmark submission. Despite the expected low performance, the integrated RDNA 2 engine will help address one of AMD’s key weaknesses in the OEM market where discrete GPUs are a rarity in most machines. It will also be helpful for troubleshooting if you need a basic display out.

AMD Zen 4 Ryzen 7000 Benchmarks and Zen 4 IPC

We tend to see benchmark results posted to third-party benchmark databases as processors work their way to market. Still, we’ve only seen two instances of a Zen 4 Ryzen 7000 processor listing that doesn’t come from AMD. 

The latest Zen 4 benchmark comes from the Basemark database and comprises a six-core Ryzen 7000 chip, part number 100-000000593-20_Y, paired with a Gigabyte X670 Aorus Master motherboard and an Nvidia RTX A4000 graphics card. The Ryzen 7000 chip ran at 4.4 GHz, but we aren’t sure if this is a final configuration or just an engineering sample. In the tweet embedded below, you can see a comparison of this benchmark result to a comparable six-core Zen 3 model. 

See more

Here we see roughly 10% gains across the board with the six-core Ryzen 7000 against the 16-core Ryzen 9 5950X, but this synthetic benchmark isn’t very common, so it doesn’t tell us too much about real-world gaming performance.

Earlier, two Ryzen 7000 submissions to the MilkyWay@Home project on the BOINC platform. The submissions don’t tell us much about performance, but it does expose the 100-000000666-21_N codename that likely represents the Ryzen 7 7800X that will replace the Ryzen 7 5800X. The other codename, 100-000000665-21_N, lines up with a 16-core model that is likely the Ryzen 9 7950X that will replace the Ryzen 9 5950X.

For now, most of the Zen 4 Ryzen 7000 benchmarks come from AMD, and as with all vendor-provided benchmarks, you should approach these results with caution. These chips are pre-production models, so performance is subject to change, and the test conditions could be favorable to AMD’s chips. 

During its Computex 2022 keynote, AMD CEO Lisa Su demoed a 16-core pre-production Ryzen 7000 chip running the Ghostwire: Tokyo game. As you can see from the third image, the chip topped out at an incredible 5.52 GHz, and AMD has since clarified that this boost occurred on multiple cores during the test. The 5.5 GHz peak matches the current desktop PC frequency leader, the 5.5 GHz Intel Core i9-12900KS. Naturally, that comes with caveats: AMD only guarantees that its chips can reach the peak frequency on a single core. However, this is a significant increase over the existing Ryzen family.

AMD also demoed it’s 16-core 32-thread Ryzen 7000 chip against the 16-core 24-thread Core i9-12900K in a Blender render (we included the test notes in the above album). The Ryzen 7000 processor completed the render of a Ryzen 7000 chip in 204 seconds, which is 31% less than the 12900K’s time of 297 seconds. Notably, the Ryzen 7000 chip has 33% more threads than the 12900K, but Intel’s Raptor Lake is expected to have 32 threads, making for a close battle.

Blender supports AVX-512, which could contribute to AMD’s lead over Intel in this benchmark, which would be odd: Intel pioneered AVX-512 but disabled the instructions with the Alder Lake chips because of the complexities of scheduling work to the correct cores in the x86 hybrid architecture. Now AMD has it in its arsenal.

Additionally, although we know that the 5nm process should be more power-efficient than the 7nm process, it is possible that the higher 230W provided by the AM5 socket could help improve all-core performance, specifically during an AVX-powered workload. (The 142W PPT limit hampered performance with the 12- and 16-core Ryzen 9 5900X and 5950X during all-core workloads.) It will be interesting to see comparisons of multi-threaded performance in a broader spate of benchmarks. Also, the impact of higher multi-core boosts on gaming shouldn’t be overlooked — even lightly-threaded games are subject to multi-core frequencies due to the operating system and other background tasks, and game engines are becoming more multi-threaded over time. In fact, we saw big gaming performance gains moving from Zen 2 to Zen 3, fed in part by multi-core boost clocks, so any improvement here floats all boats, including gaming. We do have to remember that Raptor Lake will come with four more e-cores and higher clock rates than the 12900K, so we expect close competition between the chips in heavily-threaded work.

AMD also measured Ryzen 7000’s +15% single-threaded performance improvement by putting an unnamed pre-production 16-core Zen 4 Ryzen 7000 processor with DDR5-6000 memory up against the 16-core Ryzen 9 5950X with DDR4-3600 in a Cinebench R23 single-threaded test. Unfortunately, AMD didn’t share any specific benchmark scores, but this does give us a basic idea of how the chips will fare against Intel’s Alder Lake in this specific benchmark.

According to our benchmarks, Intel’s Alder Lake chips currently hold the lead in the Cinebench R23 single-threaded benchmark. They also hold the overall lead in single-threaded performance against AMD’s Ryzen 5000 chips. Below we’ve boiled this down into a head-to-head with the flagship Alder Lake Core i9-12900K against the Ryzen 9 5950X. 

AMD Ryzen 5000 vs Alder Lake Single-Thread Performance – Percentage vs 12900K
Tom’s Hardware Cinebench R23 Single-Thread (% – CB Marks) Overall Single-Thread Geomean
Core i9-12900K DDR5 — 5.2 GHz 100% (1,968) 100%
Ryzen 9 5950X DDR4 — 4.9 GHz 83.9% (1,652) 84.9%

According to our tests, the Core i9-12900K is roughly 16% faster than the Ryzen 9 5950X in the Cinbench R23 benchmark, and AMD claims its 16-core Ryzen 7000 model is 15% faster than the 5950X. That means the Zen 4 chips will likely pull to parity with Intel’s Alder Lake in this benchmark.

Additionally, you can see that the Cinebench R23 result tracks well with our more expansive overall measurement of single-threaded performance that we use for our rankings in our CPU Benchmark hierarchy. This measurement encompasses performance in three single-threaded tests, and its similarity to the Cenbench scores suggests that Zen 4 could basically match Alder Lake in overall single-threaded performance.

Intel’s Raptor Lake will come with the same Golden Cove architecture for its performance cores (P-cores) as we saw with Alder Lake, but we expect Intel to dial up the clock rates to boost performance. As such, we can expect quite a battle for single-threaded superiority between Ryzen 7000 and Raptor Lake.

  • 2017: Zen 1 — 14nm — +52% IPC 
  • 2019: Zen 2 — 7nm — +16% IPC 
  • 2020: Zen 3 — 7nm — +19% IPC
  • 2022: Zen 4 — 5nm — +8 to 10% IPC

The TSMC 5nm process hit 5.52 GHz during AMD’s gaming demo, which was incredibly impressive, but AMD has clarified that we’ll only see an 8 to 10% improvement in IPC over Zen 3. That’s less than we’re accustomed to seeing with new AMD architectures, but improved power delivery can help deliver much larger gains in threaded workloads. It also isn’t unheard of for AMD to tout higher performance numbers as it reaches final silicon (like with Zen 1’s IPC measurements). 

Notably, AMD says the demo processor was “a 16-core pre-production sample not yet fused to specific power values, but was operating below our final 170W TDP spec.” Naturally, that doesn’t tell us if the demo processor consumed 50W below the 170W spec, or just one single watt below the spec. 

(Image credit: AMD)

AMD is eager to show that those relatively tame IPC improvements aren’t all Zen 4 Ryzen 7000 brings to the table. At its Financial Analyst Day, AMD also shared a slide showing a greater than 25% performance-per-watt and greater than 35% gain in overall performance in a multi-threaded Cinebench benchmark.

This benchmark used a 16-core 32-thread Ryzen 7000 desktop PC processor against the 16-core Zen 3 Ryzen 9 5950X. The slide is a bit misleading as it uses a non-zero axis that visually amplifies the gain, so keep that in mind. However, these are impressive generational performance gains — regardless of whether they originate from IPC, frequency, or improved power delivery and multi-core boosts. 

The Zen 4 processors will also support up to 25% more memory bandwidth per core, a marked increase that comes from both the step up to DDR5 and likely from widened pathways in the chip to deliver additional bandwidth to the cores. That will provide quite the uplift for the bandwidth-hungry AVX-512 extensions that AMD added for Zen 4.

We’ll have to wait a bit longer to get a clearer view of performance from third-party benchmarking. As always, we won’t know what you’ll see in real life until we snap the chips into the socket on our testbed. 

AMD Zen 4 Ryzen 7000 Power Consumption

AMD originally stated that Socket AM5 would have a 170W Package Power Tracking (PPT) limit, meaning that would be the peak amount of power the socket could provide to any given processor. However, AMD later clarified that the original number it shared is in error. Instead, we’ll see a 170W TDP for some processors designed for the AM5 socket, like Ryzen 7000, which is a significant increase over the current 105W TDP limit with the Ryzen 5000 processors.

Additionally, the peak power consumption (PPT) for the AM5 socket is actually 230W. That’s a significant increase over the previous-gen Ryzen 5000’s 142W limit.

Overall, the increase represents a 65W TDP and an 88W PPT increase over AMD’s current flagships. 

Ryzen 7000

(Image credit: @herb_hsso / Gigabyte leak)

We’ve also learned that all Ryzen 9 models will come with a 170W TDP, so they’ll have a PPT of 230W. Additionally, information revealed in the infamous ‘Gigabyte leak‘ indicates that AMD will have 45, 65, 95, 105, 120, and 170W power ranges spanning the entire Zen 4 lineup. 

Top Zen 4 Ryzen 7000 TDP and PPT
Tom’s Hardware AM4 – Zen 1, 2, 3 AM5 – Zen 4, Future +/- %
TDP – Thermal Design Power 105W 170W +61% | +65W
PPT – Package Power Tracking (Peak) 142W 230W +62% | +88W

This increased power delivery will help the Ryzen processors in heavily-threaded workloads, like the Blender benchmark the company demoed during Computex that showed Ryzen 7000 thrashing Intel’s Alder Lake Core i9-12900K. The increased 170W TDP also means it’s entirely possible that we could see souped-up 12- and 16-core Ryzen 7000 chips with a 170W TDP for extreme users, while 105W 12- and 16-core models slot in for more mainstream uses.

Increasing the TDP and PPT will help AMD deliver more performance, particularly for its higher core-count models, during heavy multi-threaded workloads. In many cases, AMD’s previous limit of 142W with the previous-gen AM4 socket held back performance, so the additional 88W of power will be particularly helpful with the newer 12- and 16-core models. That could help offset the demise of AMD’s consumer-oriented Threadripper HEDT platforms — the company recently announced that it was retiring all non-Pro Threadripper chips, thus putting pricing of the remaining models out of reach of enthusiasts. The higher-end high-core-count Ryzen 7000 models paired with the high-end X670E motherboards with PCIe 5.0 support (more below) will presumably fill that niche. 

In addition, AMD has specified that it will use the standard TDP and PPT calculations for chips that drop into the AM5 socket — you can simply multiply the TDP by 1.35 to calculate the maximum power consumption of the chip (PPT).

AMD Zen 4 Ryzen 7000 Architecture

AMD has shared precious few details about the Zen 4 microarchitecture, but we do know that AMD has also doubled the L2 cache per core to 1MB for Zen 4, giving the CPU cores a bigger slab of near memory for workloads. AMD says it had to balance the design to find the right amount of L2 cache, as using too much increases latency and chews into the die area.

With Intel’s chips, we’ve seen larger L2 caches primarily benefit data center workloads. Larger L2 caches generally reduce L3 cache accesses (theoretically by ~40% in this case), which reduces contention on the fabric, thus enabling better scalability and performance in all-core workloads — as opposed to enabling big boosts to single-threaded work. That means there’s a chance Zen 4’s increased L2 capacity will pay off more handsomely for the EPYC Genoa server chips than it will for most desktop PC applications. But that’s not to say that AMD won’t extract benefits for other types of work, like gaming and desktop PC applications — any increase in hit rates helps improve IPC. 

See more

Expanding the above tweet reveals some of chip detective @Locuza_’s estimates for the die size for the new 6nm I/O die (IOD), predicted at 125.66mm^2, or roughly the same size as the 124.94mm^2 12nm IOD present on the Ryzen 5000 chips.

Additionally, the Zen 4 compute die (CCD) appears to measure 72.23mm^2, which is somewhat smaller than the 83.74mm^2 die on the Ryzen 5000 processor. Given that we’re looking at a much denser N5 process for Ryzen 7000 compared to the 7nm process for Ryzen 5000, the smaller die will still have more transistors. This is predicted at ~5.57B transistors for the Zen 4 CCD compared to 4.15B transistors for Zen 3 CCDs (a 34% increase for Zen 4).

AMD Zen Core and CCD Codenames
AMD Codenames (all not confirmed) Core CCD (Core Compute Die)
Zen 2 Valhalla Aspen Highlands
Zen 3 Cerebrus Breckenridge
Zen 4 Persephone Durango
Zen 5 Nirvana Eldora

AMD Zen 4 Ryzen 7000 Processors and AM5 Socket

The top of the Ryzen 7000 package looks busy with a full complement of capacitors spread out across the PCB. This eliminates the need for capacitors that face into the socket, like the large arrays of capacitors we see spread among the LGA pads on Intel’s processors. As such, the bottom of the chip is left clear to only house the LGA pad array. (Ryzen 7000 pad image from @ExecuFix – not official from AMD.)

Ryzen’s capacitor arrangement necessitates the great-looking heatspreader — the company couldn’t put the capacitors under the IHS due to heat issues — but it also likely eliminates any chance of AMD adding a third die to the chip. AMD has said that Zen 4 chips will top out at 16 cores and 32 threads at launch, just like the previous-gen Ryzen 5000 series. AMD has told us that AM5 will be a similarly long-lived socket as we saw with AM4, so it’s possible we could see higher core counts in this socket in the future with newer generations of Ryzen. 

A motherboard vendor shared a video of a Ryzen 7000 processor being slotted into the new AM5 socket but then removed the video. Luckily, we grabbed some screenshots before they took the video down. This new socket marks a big departure for AMD — the company is moving from its long-lived Pin Grid Array (PGA) AM4 sockets to a Land Grid Array (LGA) AM5 layout. Despite the entirely different LGA1718 socket interface (1718 pins), the AM5 socket will still support AM4 coolers. The AM5 socket measures 40x40mm and the Ryzen 7000 chips adhere to the same length, width, Z-height, package size, and socket keep-out pattern as the previous-gen models, enabling backward support for AM4 coolers. As an interesting aside, Intel’s LGA 1700 socket has a higher pin density than the AM5 socket. That’s partially because Intel has a large empty keep-out space in the center of its sockets to accommodate the capacitors on the bottom of the chip. In contrast, AMD has placed all capacitors on top of the PCB, thus allowing it to maximize socket area. 

Interestingly, the Ryzen 7000 IHS says the chips were made and diffused in Taiwan, whereas Ryzen 5000 chips were diffused in Taiwan but made in the US. 

Ryzen 7000 IHS

(Image credit: TechPowerUp)

An image of the underside of Ryzen 7000’s integrated heat spreader (IHS), shared to a Facebook group by an unknown poster, has also emerged. We actually learn quite a bit about the chip from the image, such as that AMD will continue to use solder thermal interface material (TIM) with its Zen 4 Ryzen 7000 processors. The IHS also appears quite thick, which helps with thermal dissipation, thus easing cooling requirements.

We can also see the glue at each of the mounting points on the eight ‘arms,’ which is a departure from AMD’s seal-all-around approach with the Ryzen 5000 chips. The two compute dies ride one edge of the heat spreader. As you can see, there isn’t room for a third die inside the package unless AMD were to alter the die placements significantly.

Finally, we can clearly see the cutouts that make room for the surface mount devices (SMDs) on the top of the PCB (these are mostly capacitors). These top-facing SMDs will certainly add quite a bit of risk to delidding, but that would have limited appeal anyway, given that AMD uses solder TIM. The design does pose the risk of excess thermal paste squeezing out onto the capacitors, but that won’t be a concern with non-conductive thermal pastes. If you use a conductive paste it could be safest to use a sealant, like clear fingernail polish, over the exposed capacitors nearest the heatspreader.

By expanding the above tweet, you can clearly see the alignment key etched into the processor that prevents incorrect installation into the socket. You can also expand the tweet thread to see further images of the socket and Ryzen 7000 processor. 

Above you can see the AM5 socket compared to Intel’s socket LGA 1700, along with the AM5 backplate and the open socket, all courtesy of an MSI live stream. AM5 will use both Lotes and Foxconn mounting hardware. We also have detailed AM5 diagrams in the above album, courtesy of Igor’s Lab.  

AMD Zen 4 Ryzen 7000 600-Series with AM5 Socket: X670E Extreme, X670, and B650 Motherboards

AMD Zen 4 Ryzen 7000 600-Series with AM5 Socket: X670E Extreme, X670, and B650 Motherboards

AMD’s socket AM4 has served for five years across five CPU generations, four architectures, four process nodes, 125+ processors, and 500+ motherboard designs. It all started with the lowly A-Series ‘Carrizo’ chips that came before even Ryzen so it’s time for a new socket, AM5, which also means a refreshed series of motherboards. 

The Raphael processors will drop into a new AM5 socket that supports the PCIe 5.0 and DDR5 interfaces, matching Alder Lake on the connectivity front. The Socket AM5 motherboards will expose up to 24 lanes of PCIe 5.0 to the user, the most PCIe 5.0 lanes direct from the socket in the industry, and leverage an additional four lanes of PCIe 5.0 to connect to the chipset (less expensive motherboards can use a PCIe 4.0 connection to the chipset, AMD recently qualified the interface for Ryzen 7000). AMD also appears to support PCIe lane bifurcation to carve a connection into different allocations (turning an x8 slot into two x4 interfaces, for instance, which is very helpful for SSDs). Intel’s Alder Lake doesn’t support PCIe lane bifurcation, and it isn’t clear if Raptor Lake will. Additionally, all of AMD’s new 600-series chipsets are fanless.

The chipset also supports up to 14 SuperSpeed USB ports up to 20Gbps and Type-C, along with support for Wi-Fi 6E with DBS and BlueTooth LE 5.2. AMD also recently added support for USB 4 to its Ryzen platform, so that’ll be supported, too. AMD hasn’t specified, but the Wi-Fi 6E support comes as a discrete chip from the company’s initiative with MediaTek (some MSI boards, for instance, use the RZ616). We also expect to see other discrete chips for support for 40 Gbps USB 4.0 Type-C ports, which we’ve already seen on some flagship AM5 motherboards — it’s clear that AMD has vastly improved its connectivity options. The Ryzen 7000 chips also feature the SVI3 power infrastructure that supports more power phases from the motherboard and enables faster voltage response. 

The X670E ‘Extreme’ chipset will support PCIe 5.0 for two graphics slots and one M.2 NVMe SSD port. This chipset is designed for motherboards that aim for extreme overclockability and connectivity, carving out a new tier above AMD’s standard lineup. Paired with the higher 170W TDPs supported for some Ryzen 7000 chips, this platform will likely serve as a quasi-Threadripper replacement for enthusiast-class rigs. 

The X670 chipset powers the ‘standard’ high end motherboards and will come in multiple flavors with varying PCIe support. The M.2 port will support the PCIe 5.0 interface, but the first graphics slot can support either a peak of PCIe 4.0 or PCIe 5.0, which will vary by the motherboard. This offers a lower-cost sub-tier of PCIe 4.0 X670 motherboards, allowing enthusiasts to avoid paying the extra costs associated with PCIe 5.0. 

The B650 chipset will support PCIe 5.0 for a single NVMe port, but only PCIe 4.0 for the graphics slot. This chipset also supports overclocking, but as per usual, you won’t find as robust of power accommodations as you will with the more expensive boards. (To learn more about overclocking, head to our How to Overclock a CPU guide.) There are also reports of a high-tier lineup of B650E series of motherboards that will support PCIe 5.0, but this hasn’t been officially confirmed yet. Naturally, these would carry premium pricing for a B-series AMD board. 

Socket AM5 motherboards support up to four display outs via HDMI 2.1 Fixed Rate Link (FRL) and Displayport 1.4 High Bit Rate 3 (HBR3) outputs, powered by the RDNA 2 graphics engine onboard the 6nm I/O die in the Ryzen 7000 processors.  

AMD initially unveiled five of the upcoming flagship X670E motherboards, with offerings from MSI, ASRock, ASUS, Gigabyte, and Biostar. The company later had representatives from all of the major motherboard makers present their full lineups during a webinar. You can head here for the full rundown, including specifications and pictures for a constellation of AMD AM5 motherboards. 

AMD hasn’t clarified its dual-chipset alignment yet, but recently leaked pictures of the MSI X670E motherboards and ASUS Prime X670-P Wi-Fi motherboards have confirmed many of the details we previously uncovered. According to our sources, AMD’s mainstream B650 platform will come with a single chipset chip that connects to the Ryzen 7000 CPU via a PCIe 4.0 x4 connection. However, documents we’ve seen say that a PCIe 5.0 connection is available on some AM5 processors.

Meanwhile, the enthusiast X670 platform employs two of these ASMedia chips (our sources confirm the chips are identical, not a north/southbridge-type arrangement), effectively doubling these connectivity options. Furthermore, these chipsets are daisy-chained together. This stands in contrast to AMD’s approach with the current 500-series motherboards, which use different chips for the X- and B-series motherboards. The new approach will obviously provide cost and design flexibility advantages. 

See more

Another report about the 600-series chipset (codenamed Promontory 21 – PROM21) has backed up our findings and provided more insights into the power- and cost-saving features of the 600-series chipset design. The chipset is estimated at 40mm^2 (19x19mm). If you expand the tweet above, you can see another interesting caveat of AMD’s new chiplet-based chipset approach — motherboard vendors can place the chipsets in varying orientations. We’ve also seen another implementation with what appears to be a PCIe switch placed in between two chipsets, possibly for fanout connections, so there is a possibility that we’ll see a number of different techniques. 

Finally, AMD has confirmed that the AM5 socket will only support DDR5 memory. The company says that DDR5 provides the extra performance to justify the cost, but we’ll have to watch pricing closely. As we’ve reported, DDR5 continues to be more expensive than DDR4, largely because DDR5 marks the first generation of mainstream memory with onboard power management ICs (PMICs) and VRMs. Unfortunately, those have been in constant shortage due to the pandemic, but luckily, DDR5 pricing has fallen as PMIC and VRM supply improves. Unfortunately, DDR5 is still more expensive than comparable DDR4 kits.  

However, DDR5’s more complex power circuitry and design mean that these modules will continue to command a premium over DDR4. DDR5 also has in-built ECC mechanisms for data at rest, which requires additional dies to provide the same memory capacity as DDR4. This means DDR5 will remain more expensive than DDR4, regardless of supply.  

We’ve also seen audio driver code submitted to Linux to enable the audio co-processor (ACP) present in the chips. This patch has come somewhat late, so there may be no out-of-the-box audio support for Ryzen 7000 chips in Linux when the chips initially come to market, though that will soon be rectified.

AMD Zen 4 Ryzen 7000 Pricing

AMD hasn’t shared specifications for the Ryzen 7000 product stack yet, so naturally, we don’t know how pricing will land. However, it is noteworthy that TSMC’s 5nm process is rumored to be much more expensive than the 7nm process was at this stage of production. The 6nm I/O die is also expected to add cost compared to the 12nm I/O die that AMD used with the Ryzen 5000 series.

The price of the chip you buy isn’t always all that matters, though: The X670 and B650 AM5 platforms support only DDR5 memory, which has pricing implications for platforms built around AMD’s upcoming Zen 4 processors. Though the pricing differences will become smaller over time, DDR5 will remain more expensive than DDR4, regardless of supply. That means Intel’s Raptor Lake will likely have a platform pricing advantage with readily-available DDR4 platforms, which could pay off in the mid-range and low end of the product stack. AMD has a counter with less-expensive PCIe 4.0-only X670 motherboards, but we’ll have to see how that pans out when those boards come to market. 

All these factors mean you might have to pony up some extra cash compared to competing Intel Raptor Lake platforms, at least with the inaugural Zen 4 ‘Raphael’ Ryzen 7000 chips for Socket AM5. As a result, much like we saw with AMD’s high-priced debut for the Ryzen 5000 processors (AMD just finally released lower-cost Zen 3 chips a year and a half later), you can expect to pay a premium for AMD’s first Ryzen 7000 platforms when they arrive later this year. 

There is an open question, though: Will AMD bring Zen 4 designs to the older AM4 motherboards? We’ve seen no concrete indications that this will happen in the near future, and it certainly wouldn’t make sense until after the full gamut of AM5 Ryzen 7000 chips are released — as a buisness, it would be a poor decision to undercut your premium products before they’re even launched. Will AM4 Zen 4 Ryzen 7000 models come later? Time will tell. 

We won’t have to wait long to see how pricing stacks up — the 5nm Zen 4 Raphael Ryzen 7000 chips and the accompanying 600-series chipsets are due on the market in Fall 2022. We’re sure to learn much more as we get closer to launch, so check back for updates, which we’ll add to this article regularly.