AMD 4th-Gen EPYC Genoa 9654, 9554, and 9374F Review: 96 Cores, Zen 4 and 5nm Disrupt the Data Center

AMD’s 4th-Gen EPYC Genoa processors are the industry’s first 5nm x86 CPUs for the data center, and the flagship 96-core 192-thread EPYC 9654 leads the charge. The $11,805 EPYC 9654 enables packing an unprecedented amount of compute into slim server designs — up to 192 cores and 384 threads in a single chassis — courtesy of AMD’s chiplet-based chip design paired with the denser 5nm node and the Zen 4 microarchitecture. In addition, AMD says that a wide array of advances, including a 14% increase in IPC from the Zen 4 architecture and improved power delivery, culminate in up to ~30% more performance per core in both integer and floating point operations than Intel’s Ice Lake. That’s made even more impressive by the sheer core count advantage; the highest-end Genoa processor has more than twice the number of cores of the Ice Lake Xeons, and 60% more cores than the as-yet-unreleased Sapphire Rapids’ rumored peak of 60 cores.

The 9004-series Genoa chips also come packed with up to 384MB of L3 cache and the latest in connectivity tech, including support for up to 6TB of memory spread across twelve channels of DDR5, 128 lanes of PCIe 5.0, and CXL 1.1+, all of which makes Intel’s Ice Lake product stack, which tops out at the 40-core Intel Xeon Platinum 8380 for $9,400, look rather dated. Of course, much of that is because Intel’s oft-delayed Sapphire Rapids, which also comes brimming with advanced connectivity tech and has a host of in-built accelerators, is Genoa’s real competitor. However, it won’t arrive until January 2023.

EPYC Genoa also brings plenty of other new additives, too, like support for AVX-512 and AI-accelerating VNNI and Bfloat16 instructions.

But the hefty core counts and performance come at a cost: Genoa’s flagship models come with a peak default TDP of 360W, the highest of any x86 server processor to date, and customers can tune them up to 400W to extract the utmost in performance.

As we’ve seen with GPUs, power consumption is increasing rapidly because of the insatiable demand for more compute packed into the smallest form factors. Genoa is no exception — AMD’s customers have requested higher TDP limits to improve compute density and total cost of ownership (TCO), and improvements in both processor and cooling technology have enabled the company to deliver up to 400W of performance using standard air cooling. That does come with secondary power requirements, though: For instance, our test system’s fans can draw up to 300W alone, and that’s before we pencil in the 300W consumed by the 1.5TB of DDR5 memory.

All told, that results in a platform with a voracious appetite for power, but EPYC Genoa converts that power into incredible amounts of performance and a reduced TCO that is simply unmatched by its x86 competitors. Today we put AMD’s Genoa to the test with the 96-core EPYC 9654, 64-core 9554, and frequency-optimized 32-core 9274F in our labs. Let’s dive in.

AMD 4th-Gen EPYC Genoa 9004 Series Specifications and Pricing

(Image credit: Tom’s Hardware)

As you can see on the left, the Genoa processors are much larger than the previous-gen Milan chip next to it, not to mention the consumer AMD and Intel processors we also threw in for comparison.

Genoa’s larger chip package houses up to twelve 5nm Core Compute Dies (CCDs), each packing eight cores. That’s an increase of four additional CCDs compared to the previous gen Milan, necessitating a larger chip package and integrated heat spreader (IHS), which in turn helps improve cooling. The chip also includes a center 6nm I/O die to tie all the chiplets together, which we’ll cover in further depth on the following pages.

The Genoa processors drop into the new SP5 socket that isn’t backward compatible with the Socket SP3 found on previous-gen EPYC systems, meaning the chips require an entirely new platform. In the future, SP5 will also support the Genoa-X processors, which incorporate 3D-stacked L3 cache like Milan-X, and the Bergamo chips, which have new dense Zen 4c cores that enable up to 128 cores in a single socket.

Swipe to scroll horizontally
Model Price Cores/Threads Base/Boost (GHz) TDP L3 Cache (MB) cTDP (W) Package
EPYC Genoa 9654 $11,805 96 / 192 2.4 / 3.7 360W 384 320-400 12+1
EPYC Genoa 9634 $10,304 84 / 168 2.25 / 3.7 290W 384 240-300 12+1
EPYC Genoa 9554 $9,087 64 / 128 3.1 / 3.75 360W 256 320-400 8+1
EPYC Milan 7763 $7,890 64 / 128 2.45 / 3.5 280W 256
EPYC Genoa 9534 $8,803 64 / 128 2.45 / 3.7 280W 256 240-300 8+1
EPYC Milan 7663 $6,366 56 / 112 2.0 / 3.5 240W 256
EPYC Genoa 9454 $5,225 48 / 96 2.75 / 3.8 290W 256 240-300 8+1
EPYC Milan 7643 $4.995 48 / 96 2.3 / 3.6 225W 256
Xeon Platinum 8380 $9,359 40 / 80 2.3 / 3.2 – 3.0 270W 60
Xeon Platinum 8368 $6,302 38 / 76 2.4 / 3.4 – 3.2 270W 57
EPYC Genoa 9354 $3,420 32 / 64 3.25 / 3.8 280W 256 240-300 8+1
EPYC Genoa 9334 $2,990 32 / 64 2.7 / 3.9 210W 128 200-240 4+1
EPYC Genoa 9254 $2,299 24 / 48 2.9 / 4.15 200W 128 200-240 4+1
EPYC Genoa 9224 $1,825 24 / 48 2.5 / 3.7 200W 64 200-240 4+1
EPYC Genoa 9124 $1,083 16 / 32 3 / 3.7 200W 64 200-240 4+1
EPYC Genoa 9474F $6,780 48 / 96 3.6 / 4.1 360W 256 320-400 8+1
EPYC Genoa 9374F $4,850 32 / 64 3.85 / 4.3 320W 256 320-400 8+1
EPYC Milan 7F53 $4,860 32 / 64 2.95 / 4.0 280W 256
EPYC Genoa 9274F $3,060 24 / 48 4.05 / 4.3 320W 256 320-400 8+1
EPYC Genoa 9174F $3,850 16 / 32 4.1 / 4.4 320W 256 320-400 8+1

The entire EPYC Genoa 9004 Series family spans 18 models in three categories — Core Performance, Core Density, and Balanced and Optimized — creating a vastly simpler product stack compared to Ice Lake Xeon, which has 56 total models with a wide range of varying feature sets.

AMD has made a concerted effort to limit its product stack to the critical swim lanes. The bulk of the Genoa family are general-purpose chips that slot into the ‘Core Density’ for the highest core counts, and the ‘Balanced and Optimized’ category that’s geared for a mix of performance and TCO. Meanwhile, the F-Series chips, which come with higher frequencies and larger core-to-cache ratios, slot into the ‘Core Performance’ tier. AMD also has a smattering of P-series models, like the 9354P, that are designed for single-processor (1P) systems (listed in the slides below).

The Genoa chips range from 16 to 96 cores, and we notice there are no longer 8-, 28- or 56-core offerings — at least for now. Peak clock speeds span from 3.7 GHz to 4.4 GHz, with the highest boosts coming from the frequency-optimized F-series models.

The Genoa TDP ratings span from 200W to 360W, so the lowest TDP has increased by 45W while the highest end has increased by 80W. The configurable TDP (cTDP), a customer/OEM-adjustable parameter that provides increased performance in systems with robust cooling, now tops out at 400W, an incredible 120W increase over the prior-gen chips.

As you can see from the previous-gen 7003-Series Milan chips we added to the table, the Genoa flagship brings an additional 32 cores over the previous-gen halo part, the EPYC Milan 7763, and costs $3,915 more. AMD has also increased pricing for its 64-core models by $1,200 and $1,750 over the prior-gen models, but we see much more muted price increases further down the stack. For instance, the two 32-core models have increased by $341 and $150, while the 48-core model has only increased by $200. Also, bear in mind that, like Intel, AMD’s server chip pricing is merely a guideline, so actual pricing, particularly to larger customers, can vary dramatically.

We added a few Ice Lake Xeon models to the above table but kept the additions to a minimum due to the large number of Intel SKUs. Besides, Genoa will primarily face off against the forthcoming Sapphire Rapids — as we’ll see in the benchmarks, we’ll have to wait for that launch for a fair comparison. It should go without saying, but the flagship Xeon Platinum 8380 is simply outgunned with its 40 cores and a 60MB of L3 cache, while the Genoa stack tops out at 96 cores and 384MB of L3 cache. AMD has six SKUs with higher core counts and claims that nine SKUs offer more performance in integer workloads (last slide in album).

All of the Genoa chips support the following:

  • Simultaneous Multi-Threading (SMT)
  • 12 channels of DDR5-4800 memory in 1DPC configuration (2DPC speeds will be announced in Q1, 2023)
  • 6TB of memory per socket
  • 128 Lanes of PCIe 5.0 (64 lanes support CXL 1.1+)
  • AVX-512, VNNI, Bfloat 16

The Genoa processors mark the debut of several new technologies for x86 servers, like DDR5 and PCIe 5.0, with the former currently commanding a hefty premium over the incumbent DDR4 memory and the latter resulting in higher motherboard costs. Other advances, including the 5nm/6nm production nodes used inside the chips and increased power and cooling requirements for the highest-end models, also add cost. As such, AMD concedes that many customers will continue to deploy its EPYC Milan chips for lower-priority systems, so the two families will co-exist in the market for some time.

Meanwhile, the most compute-intensive and memory bandwidth and memory capacity-hungry workloads will migrate to Genoa. While the upfront costs are higher with Genoa, the TCO advantages pencil out nicely due to increased performance-per-watt and rack density, as shown in the above slides.

Supporting these new features requires a new SP5 socket, platform, and chip design. Let’s move on to the technical details, platform overview, and testing results.